

7

PlanIt! for Photographers

ALL-IN-ONE PLANNING APP FOR LANDSCAPE PHOTOGRAPHERS QUICK USER GUIDES

Time-lapse and Sequence

Time-lapse

Time-lapse photography is a technique whereby the frequency at which film frames are captured (the frame rate) is much lower than that used to view the sequence. When played at normal speed, time appears to be moving faster and, thus, time lapse.

1

PlanIt

This is the calculation

Time-lapse Details

60"

💽 5^h (Auto) 🔚 30" 🇭 🔚 20" 隨 30 10:44 PM 600 shots 3:44 AM +1

Tap on the interval value will let you choose an interval. You can see some commonly recommended interval for different cases. If you want something else, just tap on the ENTER A VALUE button on the bottom left.

2

Tap on the number of shots will give you an explanation of the time lapse and the total storage required. Because time lapse requires a lot of photos, knowing that you have enough memory is very important.

Details of the time-lapse

To get a length of 20" clip at 30 fps, you need to take a total of 600 shots shots at an interval 30" per shot in a duration of 5h. You need 12000 MB storage space for those shots at

20 MB / shot

	Starting	Ending
Time	10:44 РМ	3:44 АМ
Azimuth		
Elevation		
ocal Length		

You may wonder why it mentions time, azimuth, elevation and focal length here? I will explain it later.

tings

CANCEL

Time-lapse Simulation

The calculation itself is really straightforward. What's the most useful is the simulation in the viewfinder.

Set the starting time of the time lapse. You can tap the time directly to set a value. Or you adjust the time slider to the time you want. This way you can review the composition in the viewfinder. Tap on this choice button to select "Use the current time as starting time"

Choose one

Use current time as starting time

Set current settings as starting settings

Clear starting settings

Do the same thing for the ending time. Or you can select the duration, in which case the ending time will be set automatically.

Now click this Play button, let the magic start!

Time-lapse photography is very timeconsuming. If your time lapse involves the Sun, the Moon, or the Milky Way, a wrong calculation could ruin the whole time-lapse and waste a few hours. However, with this app, you can simulate the whole process in the viewfinder before actually taking any timelapse photos.

1

Simulation with Camera Rotation

1

Time-lapse photography often requires camera movement. This app can simulate a camera's rotation, tilt, and the lens' focal-length adjustment. For now only linear adjustments can be simulated. To do it, follow the steps below.

Press long on the starting time, which will set the current time to the starting time. Adjust the composition any way you want. The settings include the camera azimuth, the camera elevation angle, and the focal length.

Tap on the choice button to select "Set current settings as starting settings." Note the starting time will become bold, which means the starting settings are set.

Press long on the ending time and adjust the composition to the way you want, just like step 1 for the starting time.

Tap on the choice button and select "Set current settings as ending settings."

Details of the time-lapse

Tap the number of shots to see the details.

Finally, tap the Play button to let the simulation start, which will include the camera movement. To get a length of $\underline{20}^{"}$ clip at $\underline{30}$ fps, you need to take a total of <u>600</u> shots shots at an interval $\underline{30}^{"}$ per shot in a duration of <u>5h</u>. You need <u>12000</u> MB storage space for those shots at

<u>20 MB / shot</u>

	Starting	Ending
Time	10:44 ^{рм}	3:44 AM
Azimuth	33.9°	24.8°
Elevation	+26.3°	+43.8°
ocal Length	14.0 mm	24.0 mm

Sequence

1

Sequence photography combines photos from different points in time into one photo to show the whole movement or the process in a sequence. For example, showing the Moon or the Sun in different shapes in a lunar or solar eclipse. Since a typical use case of the sequence photography is an eclipse, I will use a total lunar eclipse as an example. The next total lunar eclipse will be on Jan 21, 2019. I obtained the starting and ending times of this eclipse event from timeanddate.com. Tap the starting and editing times on the sequence page. See below. The Moon Sequence during

Next, select the interval between shots. It depends on how many shots of the Moon you want to put into one photo. I selected 10 minutes as the interval in this example.

From here, I can check the composition in the simulated viewfinder. Since the shape of moon sequence is fixed at a certain location, so in order to create a success composition, finding a foreground that matches with the moon sequence is the key.

the Lunar Eclipse

Sequence Composition

To be frank, I don't like the track or path of the Moon sequence in the previous plan. If the Moon sequence is symmetric, it would be much better. Would it be possible? Yes, the shape of the Moon sequence depends on the location. If you change to another location, it would be different.

To find that out the path, you will need to switch to Set the Camera Location mode so that you can drag the camera to a different location on the earth. While dragging, you will notice the Moon sequence changes. You will quickly find out that if the camera location is in Argentina near Buenos Aries, the Moon's path will look much better. In the end, I found that in the city of Rosario, the track of the Moon's sequence will be symmetric. If you can find a building in the city or a scenic view around it as foreground to match with this symmetric moon sequence, it will be a very unique photo because a perfect center aligned symmetric moon sequence in this city is rare.

